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Abstract. A canonical Hamiltonian formalism is derived for a class of Ermakov systems
specified by several different frequency functions. This class of systems comprises all known
cases of Hamiltonian Ermakov systems and can always be reduced to quadratures. The
Hamiltonian structure is explored to find exact solutions for the Calogero system and for a
non-central potential with dynamic symmetry. Some generalizations of these systems possessing
exact solutions are also identified and solved.

1. Introduction

Ermakov systems have been intensively studied since the late 1960s both in view of their
nice mathematical properties and of the application potential of their celebrated invariants.
More recently, the identification of additional structures in the original Ermakov–Pinney
system and in its generalized version, the Ermakov–Lewis–Ray–Reid (ELRR) system (see
e.g. [1, 2] and references therein for an updated appraisal of the subject and its applications)
has called for extra attention. After the early scrutiny of the symmetry properties of the
ELRR system [1] and the exploration of several generalization schemes [3, 4], attention has
been, more recently, centred on the joint existence of a second independent constant of
motion or a Hamiltonian for subclasses of Ermakov systems [5–8]. This particular topic
is importantper sebecause, for Ermakov systems, the existence of a second constant of
motion usually implies, as shown in section 2, complete integration. Most importantly,
however, the Hamiltonian structure is fundamental in various contexts of physics such as
quantization and perturbation theory.

A generic ELRR system for two independent variables is given by equations (1) and (2)
below. This paper considers Ermakov systems for whichω is generalized to be a function of
the variablesx andy besides the timet . By choosing the functionsf andg appropriately,
it is possible to fit the equations into a Hamiltonian formalism and eventually derive another
constant of motion, distinct from the commonly known Lewis–Ray–Reid invariant (LRRI)
given by equation (3). When two integrals exist for this Hamiltonian Ermakov system then
we show that the equations are completely integrable.

A Hamiltonian structure for the ELRR system can be enforced by specializing the
arbitrary functionsf , g andω. For w = ω(t), that is, whenω is a function oft only, the
Hamiltonian constraint involves onlyf andg. This specialization has already served two
important applications [7] where the potential in the resulting Hamiltonian is essentially
built with what remains of the functionsf andg. In a more general situation whereω also
depends on the dynamic variables, the Hamiltonian constraint is less restrictive and applies
to a wider class of admissible systems.

0305-4470/96/144083+10$19.50c© 1996 IOP Publishing Ltd 4083
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In this paper we consider the Hamiltonian property of the generalized ELRR system
in which ω may depend not only on time but also onx and y. In section 2, a quadratic
form in the momenta is proposed for the Hamiltonian and the consequences of this choice
are explored analytically. In this way, all known cases of Hamiltonian Ermakov systems
in two spatial components are recovered and generalized. The general class of nonlinear
systems thus determined is, in addition, shown to be exactly integrable. This remarkable
fact encounters applications in several areas of physics. In section 3 we apply the technique
in two different situations which, in our understanding, illustrate its applicability both in
recovering results already known in the literature and in identifying new exactly solvable
models. Among the new results we quote a modified version of the Calogero potential [9]
and a variation of a non-central Hartmann potential, known to possess dynamic symmetry
[10–12].

The most general system in two configuration variables that qualifies for an Ermakov
or ELRR system is usually written as

ẍ + ω2x = 1

yx2
f (y/x) (1)

ÿ + ω2y = 1

xy2
g(x/y) (2)

where the overdot stands for the time derivative,f and g are arbitrary functions of their
arguments andω is an arbitrary function of timet and ofx, y and their time derivatives of
first and higher orders. For practical reasons, we consider onlyω = ω(x, y, t).

The system of equations (1) and (2) possesses the Lewis–Ray–Reid invariant [13]

I = 1
2(xẏ − yẋ)2 +

∫ y/x

f (s) ds +
∫ x/y

g(s) ds. (3)

The invariant (3) persists for arbitrary dependence ofω on x and y [1, 5]. We can,
therefore, mergeω2 and g in a single function and redefinef according to the following
rules:

ω2 7−→ �2 ≡ ω2(x, y, t) − 1

xy3
g(x/y) (4)

f (s) 7−→ F(s) = f (s) − 1

s2
g(1/s) (5)

g(s) 7−→ 0. (6)

These redefinitions simplify future considerations and cast the ELRR system and the LRRI
in the more compact forms

ẍ + �2x = 1

yx2
F(y/x) (7)

ÿ + �2y = 0 (8)

I = 1
2(xẏ − yẋ)2 +

∫ y/x

F (s) ds. (9)

The transformations (4–6) also indicate that the conventional ELRR system comprises
only two arbitrary functions and not three as implied by the traditional notation. Of course,
all previous results found in the literature, obtained in the standard notation, remain true.
Notice, however, that we can always consider the Hamiltonian property of the ELRR system
in the form (7) and (8) without any loss of generality.
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2. Hamiltonian formalism

As already mentioned,ω in (1) and (2) can be a function of time and of any combinations
of the dynamic variablesx, y and their time derivatives of arbitrary order. In this work we
consider the Hamiltonian property of the ELRR system for which the frequency function
is allowed to depend not only on time (as usual) but also onx and y. In this case, the
resulting constraint becomes less restrictive and we can find a much wider class of ELRR
systems satisfying the Hamiltonian property.

We shall consider for the Hamiltonian of the Ermakov system (7) and (8) the function

H = 1
2Ap2

x + Bpxpy + 1
2Cp2

y + V (x, y, t) (10)

whereA, B andC are numbers such thatAC−B2 6= 0 andV (x, y, t) is a potential function
depending on time and on the spatial variables.

The ansatz (10) is justified in Douglas theory for two-dimensional Lagrangian systems
[14], where it is shown that the coefficients of the quadratic terms in the velocities in a
Lagrangian are constants of motion, at least for velocity-free force fields. In particular,
these coefficients can be taken as numerical constants. As one can show, the addition of
a term linear in the momenta does not alter the generality of the description. Finally, two
cases of Hamiltonian Ermakov systems known in the literature are of this proposed form
[5, 6].

We now impose that the canonical Hamilton equations generate the ELRR system (7)
and (8). The Hamiltonian function (10) generates the following equations for the motion of
the system:

ẋ = Apx + Bpy (11)

ẏ = Bpx + Cpy (12)

ṗx = −∂V

∂x
(13)

ṗy = −∂V

∂y
. (14)

This first-order system of equations in(x, y, px, py) can be easily recast in the equivalent
second-order system of equations for(x, y),

ẍ + �2x = −A
∂V

∂x
− B

∂V

∂y
+ �2x (15)

ÿ + �2y = −B
∂V

∂x
− C

∂V

∂y
+ �2y (16)

where the terms proportional to�2 were conveniently added to both sides. The comparison
of equation (16) with (8) leads to the conclusion that the admissible frequencies must satisfy

�2 = 1

y

(
B

∂V

∂x
+ C

∂V

∂y

)
. (17)

Also, the comparison of equation (15) with equation (7), when� is given by (17), shows
that the potential must obey the linear first-order partial differential equation

(Bx − Ay)
∂V

∂x
+ (Cx − By)

∂V

∂y
= 1

x2
F(y/x). (18)

The characteristic equations associated to (18) can be written in the form

dx

Bx − Ay
= dy

Cx − By
= x2dV

F(y/x)
(19)
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and have—as can be easily checked—the general solution

V = 1

2
3(q, t) + 1

q

∫ s

F (s ′) ds ′. (20)

Here 3(q, t) is an arbitrary function of its arguments, and the new variablesq and s are
defined in terms of the dynamic variables and the parameters of the Hamiltonian as

q = Ay2 − 2Bxy + Cx2 (21)

s = y/x. (22)

It is also convenient to define the function

ξ(s) ≡ As2 − 2Bs + C (23)

so thatq = x2ξ(s).
In the conventional notation, the resulting Hamiltonian ELRR system implied by the

admissible frequencies and potentials, now reads

ẍ + ρ
∂3

∂q
x = 1

yx2
f̄ (y/x) (24)

ÿ + ρ
∂3

∂q
y = 1

xy2
ḡ(x/y) (25)

where

f̄ (s) = 2ρ
s

ξ2

∫ s

F (s ′) ds ′ + s

ξ
(As − B)F(s) (26)

ḡ(1/s) = 2ρ
s3

ξ2

∫ s

F (s ′) ds ′ + s2

ξ
(Bs − C)F(s) (27)

and

ρ = AC − B2. (28)

There remain two arbitrary functions in the Hamiltonian ELRR system, namely3(q, t)

andF(y/x). In fact, f̄ and ḡ in (24) and (25) are determined by the single homogeneous
function F , and one can check directly that they satisfy

s(Bs − C)
df̄

ds
+ (C + 2Bs)f̄ = (As − B)

dḡ

ds
+

(
A + 2B

s

)
ḡ. (29)

It is interesting to compare this result with those in the literature. Cerveró and Lejarreta’s
Hamiltonian Ermakov systems [6] are obtained from the present formalism by setting
A = C = 1, B = 0, and3 = ω2(t)q in (10) and (20). The resulting functions̄f and
ḡ do satisfy their Hamiltonian constraint [6], which is precisely relation (29) specialized
for the appropriate parameter values. This formalism has already been used to study the
propagation of elliptic Gaussian beams in nonlinear, dispersive media [7, 8]. Also the
completely integrable class of Ermakov systems determined by Goedert [5] is Hamiltonian
and derivable from the present formalism. In this case the right choice isA = C = 0,
B = 1, and3 = 2

∫ −q/2
w2(q ′) dq ′. Needless to say, the functions̄f and ḡ resulting from

this prescription do satisfy the integrability condition stated in [5].
According to the Liouville–Arnold theorem, 2n-dimensional Hamiltonian systems

possessingn independent constants of motion in involution with compact level surfaces
are integrable by quadratures [15]. For these systems, the motion is quasiperiodic and
restricted ton-dimensional tori. The present class of four-dimensional Hamiltonian ELRR
systems will possess two independent constants of motion in involution provided that the
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Hamiltonian does not depend on time. In this case,H itself is a constant of the motion
independent of the LRRI. So, when the function3(q, t), which is the source of time-
dependence in the Hamiltonian, does not containt , one can expect that the problem is
completely integrable. In fact, the level surfacesH = constant andI = constant are not
compact in general, but the differential equations nevertheless are reducible to quadratures.
Consequently the Hamiltonian ELRR system treated here must be included in the non-trivial
class of solvable ELRR systems, to which belong, for instance, some systems analysed by
Govinder and Leach who considered frequency functions depending only on time [16].

The Hamiltonian formalism can be used to solve elegantly the equations of motion.
Clearly x andy are not the natural coordinates for the problem. Changing from(x, y) to
the new coordinates(q, s), recasts the Hamiltonian and the LRRI in the form

H = 2ρqp2
q + 1

2
3(q, t) + I (s, ps)

q
(30)

I = 1
2ξ2(s)p2

s +
∫ s

F (s ′) ds ′ (31)

wherepq andps are the momenta conjugate toq and s, respectively. This transformation
decouples the dynamics and allows one to treat separately the subsets(pq, q) and (ps, s)

of the phase space. Moreover, when3 is time-independent,H is also an invariant. In this
situation, we can proceed in a manner similar to that used in the energy integral method of
standard classical mechanics and split the problem into two separable ordinary differential
equations,

(dq/dt)2 = 4ρ(2qH − q3(q) − 2I ) (32)

(ds/dt)2 = 2q−2(t)ξ2(s)

(
I −

∫ s

F (s ′) ds ′
)

. (33)

Equations (32) and (33) can be successively solved in terms of quadratures yielding a formal
solution to the ELRR system. In fact, the solution of (33) requires the knowledge ofq(t)

obtained from (32).
The structure of (33) suggests the rescaling of the time variable according to

dτ(t) = dt/q(t). (34)

Such rescaling is applicable globally only whenq(t) is positive definite in time andτ is
monotonic. Under these circumtances system (32) and (33) reads(

dq

dτ

)2

= 4ρq2 (2qH − q3(q) − 2I ) (35)

(
ds

dτ

)2

= 2ξ2(s)

(
I −

∫ s

F (s ′) ds ′
)

(36)

which is a decoupled set of separable equations and, therefore, reducible to quadratures. This
procedure specifies ageneralsolution of the problem that involves four arbitrary constants,
namelyH , I and two constants arising from (35) and (36).

One interesting remark concerning the Hamiltonian Ermakov system is the following:
changing3(q) according to3(q) 7−→ 3(q)+ k1 or according to3(q) 7−→ 3(q)+ 2k2/q,
wherek1 and k2 are constants, is equivalent to changing the values of the contantsH or
I in (32) and, therefore, will not change the nature of the integral to be performed. This
transformation can be explored to identify variations of known, exactly solvable, systems
that are also exactly solvable. On the one hand, the addition ofk1 to 3 does not lead to
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a relevant variation of the problem, since it only implies a change in the numerical value
of H . On the other hand, the addition of 2k2/q to 3 does imply aqualitative change in
the potential with no relevant change in the calculations. We only need to replaceI in the
original equations according to

I 7−→ I + k2. (37)

As a concluding remark to this section, we stress that the Hamiltonian ELRR has been
reduced to quadratures. Whether these quadratures can actually be performed globally is a
different question to be examined in each particular application. Another important follow-
up remark concerns the nonlinear superposition law [13] associated with the ELRR systems.
In general, this nonlinear superposition law is implicit in the sense that it cannot be actually
applied in view of the coupling between the equations. However, when at least one of the
equations decouples, the integration can be carried through and the corresponding nonlinear
superposition law becomes explicit. For Hamiltonian ELRR systems, we arrive at equations
(34) and (36) which constitute an explicit nonlinear superposition law. This is clear since
s(t) is constructed usingq(t) obtained from a decoupled equation, namely equation (32).

3. Sample applications

In this section we work out some sample applications of the theory. In particular, we analyse
the Calogero potential and a super integrable example of a non-central potential. Several
other potentials which represent generalizations of either the harmonic or the Coulomb
potentials could be treated in a similar way at least in what concerns the dynamics of
the two-dimensional motion obtained by projection in an appropriate plane. The super
integrable Hartmann potential and some generalizations or variations of it (see [11, 12])
certainly belong to this category. A generalized version of the coupled Pinney equations of
interest in two-layer shallow-water wave theory [3] can also be solved analytically by the
formalism of this paper.

3.1. The Calogero system as a Hamiltonian ELRR system

As a first example to illustrate the analytical integration of a Hamiltonian ELRR system, we
consider the Calogero potential and its associated system [9], which is a one-dimensional
three-body problem given by the Hamiltonian

HC = 1

2
(p2

1 + p2
2 + p2

3) + σ 2

6
((x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2)

+ g1

(x1 − x2)2
+ g2

(x2 − x3)2
+ g3

(x3 − x1)2
(38)

whereσ, g1, g2 andg3 are non-negative constants. A rescaling of time and space coordinates
allows one to setσ ≡ 1. Moreover, in view of the translational invariance of the problem,
we transform to the centre of mass and Jacobi coordinates:

R = 1
3(x1 + x2 + x3)

x = 1√
2
(x1 − x2) (39)

y = 1√
6
(x1 + x2 − 2x3).

The centre of mass only executes free motion, and the(x, y) dynamics is described by the
reduced Hamiltonian

H = 1

2
(p2

x + p2
y) + 1

2
(x2 + y2) + g1

2x2
+ 2g2

(x − √
3y)2

+ 2g3

(x + √
3y)2

. (40)
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As can be easily checked, the reduced Hamiltonian (40) is of Ermakov type. Moreover,
being autonomous, it is integrable. The coefficientsA, B and C in (10) become, in this
case,A = C = 1 andB = 0. Consequently,q = x2 + y2 = r2 and the corresponding
Ermakov potential reads

V = q

2
+ 1 + s2

2q

(
g1 + 4g2

(1 − √
3s)2

+ 4g3

(1 + √
3s)2

)
. (41)

By comparing this form and equation (20) we find that for the Calogero system

3 = q (42)

and ∫ s

F (s ′) ds ′ = 1 + s2

2

(
g1 + 4g2

(1 − √
3s)2

+ 4g3

(1 + √
3s)2

)
. (43)

Equation (32) can be solved analytically for3 given in (42) and it can be verified directly
that the rescalingt 7→ τ is properly defined, that is,q(t) is positive definite in time. The
resulting system of equations to be solved is now(

dq

dτ

)2

= 4q2(2Hq − q2 − 2I ) (44)(
ds

dτ

)2

= (1 + s2)2

(
2I − (1 + s2)

(
g1 + 4g2

(1 − √
3s)2

+ 4g3

(1 + √
3s)2

))
. (45)

It is now easy to find the solutionq(τ ′), where we make the convenient replacement
τ 7→ τ ′ ≡ √

2Iτ (I is strictly positive for the Calogero system),

q(τ ′) = 2I

H − √
H 2 − 2I sin(2(τ ′ + c1))

(46)

where c1 is the integration constant arising from (44). This integration constant and the
integration constantc2 arising from the integration of (45) below can always be expressed
in terms of the initial position and ofH andI .

The functions(τ ) can be evaluated in closed form for a few different values ofgi . We
chooseg1 = g2 = g3 ≡ g, which is perhaps the most interesting case yielding solutions in
terms of circular functions,

s(τ ′) = tan

(
1

3
sin−1

((
1 − 9g

2I

)1/2

sin(3(τ ′ + c2))

))
(47)

wherec2 is the integration constant referred to before.
The last two equations express the parametric orbits of the problem and are a general

solution involving four integration constants, namelyH, I, c1 and c2. This solution is in
full agreement with the results of Khandekar and Lawande [17], but are obtained in a more
systematic way.

As mentioned before, the addition of 2g4/q to 3, whereg4 is a constant, does not alter
the nature of the analytic solutions. It only requires the changeI → I + g4 in all formulae.
This proves the existence of closed form solutions for the modified Hamiltonian:

H = 1

2
(p2

x + p2
y) + σ 2

2
(x2 + y2) + g1

2x2
+ 2g2

(x − √
3y)2

+ 2g3

(x + √
3y)2

+ g4

x2 + y2
. (48)

Therefore, in the original variables, the one-dimensional three-body problem described by
the Hamiltonian

H̄C = 1

2
(p2

1 + p2
2 + p2

3) + σ 2

6

(
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2
) + g1

(x1 − x2)2
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+ g2

(x2 − x3)2
+ g3

(x3 − x1)2
+ 3g4

(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2
(49)

is also exactly solvable.H̄C can be viewed as an integrable modification of the Calogero
system. Notice that the term ing4 is a new contribution that did not belong to the original
system. We remark that this generalization is possible thanks to the fact that, in Jacobi
coordinates, the Calogero system possesses the structure of a Hamiltonian ELRR system.

3.2. A Hamiltonian with dynamic symmetry

The non-central problem described by the Hamiltonian

H = 1

2
(p2

x + p2
y) − σ√

x2 + y2
+ g1

y2
+ g2x

y2
√

x2 + y2
(50)

whereσ , g1 andg2 are positive constants, is known to possess a dynamic symmetry group
[10] and is separable in parabolic and polar coordinates. Three-dimensional extensions of
H are super-integrable systems [11], and have received attention as a non-central force
problem amenable to Feynman quantization [12]. Several other two-dimensional versions
of three-dimensional super-integrable models can be reduced to Hamiltonian ELRR systems.
We selected (50) as a good example to illustrate the technique proposed in section 2.

A rescaling of time and space allows one to setσ ≡ 2 without any loss of generality.
For this problem alsoq = x2 + y2 = r2 and it is convenient to introduce polar coordinates
so thats = tanθ . The potential, in(r, θ) coordinates, now reads

V = −2

r
+ 1

r2 sin2 θ
(g1 + g2 cosθ). (51)

Comparison of equations (51) and (20) shows that in this case

3(q) = −4

r
(52)

and ∫ s=tanθ

F (s ′) ds ′ = 1

sin2 θ
(g1 + g2 cosθ). (53)

Let us restrict considerations to the cases where the rescaled timeτ is well defined and
monotonic. A detailed analysis shows that for positive definite LRRI invariant (sufficiently
high angular momentum) the trajectories never cross the origin. ForI > 0 the variable
q = r2 never vanishes andτ is monotonically increasing as can be calculated directly
from equation (34). We note that forI > 0, q 6= 0 is also required for the right-hand
side of equation (32) to be positive definite, a necessary condition for the existence of real
valued solutions. We therefore considerI > 0 and reduce the original problem to the set
of differential equations(

dr

dτ

)2

= 2r2(Hr2 + 2r − I ) (54)(
dθ

dτ

)2

= 2

(
I − 1

sin2 θ
(g1 + g2 cosθ)

)
. (55)

A direct integration of (54) and (55) (withτ 7→ τ ′ ≡ √
2Iτ ) yields the parametric orbit

equation

r(τ ′) = I

1 − √
1 + HI sin(τ ′ + c1)

(56)
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cosθ(τ ′) = − g2

2I

(
1 −

√
1 + 4I (I − g1)/g

2
2 sin(τ ′ + c2)

)
(57)

wherec1, c2 are integration constants which can be expressed in terms of the initial position
and of H and I . For negative values of the energy, the motion is bounded. When the
energy is positive we find open trajectories that escape to infinity for finite values ofτ ′.
However, in the original parametert this process is regular and takes an infinite amount of
time as expected on physical grounds. Another interesting feature of the bounded motion
is the fact that it does not explore the entire rangeθ = 0 to θ = 2π . This is evident from
equation (57), which inpliesχ− 6 cosθ 6 χ+, where

χ∓ = − g2

2I

(
1 ±

√
1 + 4I (I − g1)/g

2
2

)
. (58)

It is easy to verify thatχ+ < 1 which corresponds to the fact that the trajectories never
visit that sector of the plane whereθ 6 arccosχ+. It is also clear that for sufficiently small
values ofg2 there may exist another excluded sector aroundθ = π . This is the case when
χ− > −1 which is possible if and only if 2I > g2 andg1 > g2.

As in the first example, the addition of a term 2g3/q to 3(q), where g3 is a new
constant, does not alter the calculations. The new exactly solvable potential is given by

V = 1

2
(p2

x + p2
y) − σ√

x2 + y2
+ g1

y2
+ g2x

y2
√

x2 + y2
+ g3

x2 + y2
. (59)

Here we should stress that the term proportional tog3 is novel and represents an
incorporation to the original potential that preserves the integrability property. Again this
was possible thanks to the Hamiltonian character of this Ermakov system.

4. Conclusions

A quite general class of exactly integrable Hamiltonian ELRR systems has been identified
and solved. The basic result comes from the fact that an Ermakov system being Hamiltonian
(with a quadratic form in the momenta) is exactly solvable in terms of quadratures. Also the
ultimate equations for these systems are decoupled, a fact that leads to practical nonlinear
superposition laws.

Another important feature of the formalism stems from the fact that for each exactly
solvable model there always exists a modified version of the problem that is also integrable
analytically. This provides a mechanism to spawn new integrable Ermakov systems. Two
examples of physically interesting applications were treated in detail to illustrate the practical
value of the method. The scope of the applications of the method, however, is much wider
and a detailed assessment of its reach is an open question that deserves further study.

Some open questions are readily identified. A first open question concerns the expansion
of the method to higher-dimensional Ermakov systems. From the point of view of physics,
this would be most interesting, mainly for three space dimensions. A second open question
concerns the Hamiltonian character of ELRR systems with a velocity-dependent frequency
function. Still another interesting question concerns the perturbation theory of ELRR
systems. This completely unexplored subject has not been touched so far, perhaps because
of the lack of an Hamiltonian structure. The results of this paper open a new prospective
for such issues.
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